Reduced continuity finite element methods for first order scalar hyperbolic equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods

A new Petrov-Galerkin approach for dealing with sharp or abrupt field changes in Discontinuous Galerkin (DG) reduced order modelling (ROM) is outlined in this paper. This method presents a natural and easy way to introduce a diffusion term into ROM without tuning/optimising and provides appropriate modeling and stablisation for the numerical solution of high order nonlinear PDEs. The approach i...

متن کامل

Space-time Finite Element Methods for Second-order Hyperbolic Equations*

Space-time finite element methods are presented to accurately solve elastodynamics problems that include sharp gradients due to propagating waves. The new methodology involves finite element discretization of the time domain as well as the usual finite element discretization of the spatial domain. Linear stabilizing mechanisms are included which do not degrade the accuracy of the space-time fin...

متن کامل

Finite Volume Element Method for Second Order Hyperbolic Equations

We discuss a priori error estimates for a semidiscrete piecewise linear finite volume element (FVE) approximation to a second order wave equation in a two-dimensional convex polygonal domain. Since the domain is convex polygonal, a special attention has been paid to the limited regularity of the exact solution. Optimal error estimates in L2, H1 norms and quasioptimal estimates in L∞ norm are di...

متن کامل

A Finite Element Splitting Extrapolation for Second Order Hyperbolic Equations

Splitting extrapolation is an efficient technique for solving large scale scientific and engineering problems in parallel. This article discusses a finite element splitting extrapolation for second order hyperbolic equations with time-dependent coefficients. This method possesses a higher degree of parallelism, less computational complexity, and more flexibility than Richardson extrapolation wh...

متن کامل

Explicit Finite Element Methods for Symmetric Hyperbolic Equations∗

A family of explicit space-time finite element methods for the initial boundary value problem for linear, symmetric hyperbolic systems of equations is described and analyzed. The method generalizes the discontinuous Galerkin method and, as is typical for this method, obtains error estimates of order O(hn+1/2) for approximations by polynomials of degree ≤ n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 1994

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/1994280606671